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Under the assumption that each /Ak, k = O, 1, ..., is finite, the following
Morse relations hold:

MiMo > -1

it, a-1j.t-i + . . . + lX'o(

11. An example for the application of the theory is a Jordan curve
which bounds a small strip around a pair of conjugate cuts on a torus.
This curve, as pointed out by Courant, bounds at least two minimal
surfaces which are proper relative minima. An example with two bound-
aries, which has not been taken up in this note, is the classical case of two
circles with line of centers perpendicular to the planes of the circles.

1 This note was read at the Sept., 1938, meeting of the American Mathematical
Society, New York City.

2 This is an essential step in the methods of Douglas, Rado, Courant.
3 This follows from the lower semi-continuity of the Dirichlet functional and the

equicontinuity of the boundary values of all surfaces in 9N. Cf. Courant, "Plateau's
Problem and Dirichlet's Principle," Ann. Math., 38, 679-724 (1937), esp. pp. 690-692.

4 The Lemma remains true without this restriction.
6 Morse, "Analysis in the Large," notes of the Institute for Adv. Study, 1936-1937;

"Functional Topology and Abstract Variational Theory," Ann. Math., 38, 386-448
(1937); and "The Calculus of Variations in the Large," Amer. Math. Soc. Coll. Pubi., 18.

6 By a bloc of minimal surfaces is meant a maximal connected set of minimal surfaces
X bounded by r for which D[S] = constant. It is very unlikely that a bloc consists of
more than one surface.
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If M is an arbitrary domain of things in which a binary relation e is de-
fined, call "propositional function over M" any expression so containing (be-
sides brackets) only the following symbols: 1. Variables x, y .... whose
range is M. 2. Symbols a, ... an denoting2 individual elements of M (re-
ferred to in the sequel as "the constants ofso"). 3. e. 4. (not), v (or).
5. Quantifiers for the above variables x, y . .. * Denote by M' the set of
all subsets of M defined by prop. funct. qo(x) over M. Call a function f
with s variables a "function in M" if for any elements xi ... x, of M
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f(xj ... x,) is defined and is an element of M. If 'p(x) is a prop. funct. over
M with the following normal form:

(xi ... xn) (3y1 ... ym) (Zi ... Zk) (3ul ... ue) ....

L(xxi ... X Ymzl... ZkUl ... Uc ....

(L containing no more quantifiers) and if a e M, then call "Skolem-functions
for 'p and a" any functions fi . . . fm gl ... ge ... in M with resp. n ... n,
n + k ... n + k ... variables such that for any elements xl ... x"zi ...
Zk ... of M the following is true:

L(ax1 ... xn fi(xI ... Xn) ... fm(Xl ... Xn) Zl ... Zk

gl(Xl -... XnZl ... Zk) ... ge(Xl *. . XnZl ... Zk) ....)

The proposition 'p(a) is then equivalent with the existence of Skolem-fnct. for
'p and a.
Now define: Mo = IA}, Ma+, = Ma', Mp = Z Ma for limit numbers

a<0
I8. Call a set x " constructible," if there exists an ordinal a such that x e Ma
and "constructible of order a" if x e Ma+, - Ma. It follows immediately
that: Ma CM and Ma e Mpfor a < j and that:
TH. 1. x e y implies that the order of x is smaller than the order of yfor any

constr. sets x, y.
It is easy to define a well-ordering of all constr. sets and to associate with

each constr. set (of an arbitrary order a) a uniquely determined prop. fnct.
'pa(x) over Ma as its "definition" and furthermore to associate with each
pair $pa, a (consisting of a prop. fnct. 'pa over Ma and an element a of Ma
for which 'pa(a) is true) uniquely determined "designated Skolem-fnct. for
(Pa a."3
TH. 2. Any constr. subset m of Mwa has an order < Wa+1 (i.e., a constr.

set, all ofwhose elements have orders <Wa has an order < wCa+i).
PROOF: Define a set K of constr. sets, a set 0 of ordinals and a set F of

Skolem-fnct. by the following postulates I-VII:
I. MWaCK andme K.
II. If x e K, the order of x belongs to 0.
III. If x e K, all constants occurring in the definition of x belong to K.
IV. If a e 0 and 'pa(X) is a prop. fnct. over Ma all of whose constants

belong to K then:
1. The subset of Ma defined by Ya belongs to K.
2. For any y eK*Ma the design . Skolem-fnct. for 'pa and y or psaand

y (according as (p,(y) or '(pj(y)) belong to F.
V. Iff e F, xi. . . xnE6K and (xi ... xn) belongs to the domain of definition

of f, thenf(x1 ... x") e K.
VI. If x, y e K and x - y $ A the first4 element ofx - y belongs to K.
VII. No proper subsets of K, 0, F satisfy I-VI.
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TH. 3. Ifx * yand x,yeK Ma+i, thenthereexistsazeK Masuchthat
zex-yorzey-x.13
(follows from VI and Th. 1.)
TH.4.5 K + O + F = Ka

since Ma=R= and K + 0 + F is obtained from Mwa +{m Iby forming
the closure with respect to the operations expressed by Il-VI.
Now denote by v the order type of 0 and by -5 the ordinal corresponding

to a in the similar mapping of 0 on the set of ordinals < q. Then we have:
TH. 5. There exists a one to one mapping x' ofK on M,, such thatxey-

x'ey'forx, yeK and x' = xforxe MX,.
PROOF: The mapping x' (which will carry over the elements of order a

ofK exactly into all constr. sets of order Ii for any a eO) is defined by trans-
finite induction on the order, i.e., we assume that for some a e 0 an isomor-
phic6 mapping f of K- Ma on Ma7 has been defined and prove that it can
be extended to an isomorphic mapping g of K-Ma+i on Ma+18 in the fol-
lowing way: At first those prop. fnct. over Ma whose constants belong to K
(hence to K- Ma) can be mapped in a one to one manner on all prop. fnct.
over Ma by associating with a prop. fnct. spa. over Ma having the constants
a, ... a. the prop. fnct. spa over M; obtained from 'p, by replacing as by ail
and the quantifiers with the range Ma by quantifiers with the range Ma.
Then we have:
TH. 6. (pa(x) 'pa(x') for any xe K- Ma,
PROOF: If 'pa(x) is true, the design . Skolem-fnct. for 'p, and x exist,

belong to F (by IV, 2) and are functions in K-Ma (by V). Hence they are
carried over by the mapping f into functions in Ma which are Skolem-
functions for 'pa, xl, because the mapping f is isomorphic with respect to e.
Hence pa(x) pxa(xl).

°a(x) -p&a(xl) is proved in the same way.
Now any spa over Ma whose constants belong to K, defines an element of

KEMa+i by IV, 1 and any element b of K Ma+i can be defined by such a
spa (if b e Ma+i - Ma this follows by III, if b e Ma then "x e b" is such a (pa).
Hence the above mapping of the 'pa on the 'pr gives a mapping g of all
elements ofK - Ma+, on all elements of Ma+ 1 with the following properties:

A. g is singlevalued, because if 'pa, 'Pa define the same set, we have
$0a(x) = 4,t/(x) for x e Ma-K, hence 'pa(xl) = ,'a(x1) by Th. 6, i.e., spa and
'P2 also define the same set.

B. x ey=xleg(y)forxeK.Ma,yeKMMa+l.
(by Th. 6)

C. g is one to one, because if x, y e K *Ma+ 1, x * y then by Th. 3 there is
a z e (x - y) + (y - x), z 6 K-Ma, hence z1 e [g(x) - g(y)] + [g(y) -

g(x)] byB. Hence g(x) * g(y).
D. g is an extension of the mappingf, i.e., g(x) = xlfor x eK M..
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PROOF: For any b e K *Ma a corresponding spa which defines it is x e b,
hence p0a is x e bI hence g(b) = b'.

E. g maps KMa exactly on Ma (by D)9 and therefore, K(Ma+i - Ma)
on Ma+j - Ma by C.

F. g is isomorphicfor e, i.e., g(x) e g(y) x e yfor any x, y e K* Ma+l.
PROOF: If x e K-Ma, this follows from B and D, if x e K-(Ma+i -

Ma) then g(x) e Ma+l- M& by E, hence both sides of the equivalence are
false by Th. 1.
By D and F, g is the desired extension off and hence the existence of an

isomorphic mappingx' ofK on M, follows by complete induction. Further-
more since all ordinals <Wa belong to 0 (by I, II) we have j3 = ,B for j3 <Wa
from which it follows easily that x = x' for x e M,a. This finishes the
proof of Th. 5.
Now in order to prove Th. 2 consider the set m' corresponding to m in the

isomorphic mapping of K on M,. Its order is < v < wa+l because m' e

M. and7i = O < NabyTh. 4. Sincexem = x' em' forxeK, we have
x e m = x e m' for x e Mwa by Th. 5. Since furthermore m C Mca it fol-
lows that m = m' M,a, i.e., m is an intersection of two sets of order
< Wa+l, which implies trivially that it has an order < wCa+l.
TH. 7. M@,, considered as a model for set-theory satisfies all axioms of

Zermelo'0 except perhaps the axiom of choice and Mg (Q being the first inac-
cessible number) satisfies in addition the axiom of substitution, if in both cases
"definite Eigenschaft" resp. "definite Relation" is identified with "prop. fnct.
over the class of all sets" (with one resp. twofree variables).
Sketch of proof for M,,,: ax. I, II are trivial, ax. VII is satisfied by Z =

M., ax. III-V have the form (3x)(u) [u e x = p(u))], where the s are certain
prop. fnct. over M,,. Hence, by def. of Ma+, there exist sets x in Mw,,+i
satisfying the axioms. But from Th. 1 and Th. 2 it follows easily, that the
order of x is smaller than w,, for the particular so under consideration, so that
there exist sets x in the model satisfying the axioms.
For MQ ax. I-V and VII are proved in exactly the same way and the

axiom of subst. is proved by the same method as ax. III-V. Now denote by
"A" the proposition "There exist no non-constructible sets"'" by "R" the
axiom of choice and by "C" the proposition "2a = Ha+, for any ordinal
a." Then we have:
TH. 8. A R and A C.
A M R follows because for the constr. sets a well-ordering can be defined

and A D C holds by Th.2, because MwDa = N.
Now the notion of "constr. set" can be defined and its theory developed

in the formal systems of set theory themselves. In particular Th. 2 and,
therefore, Th. 8 can be proved from the axioms of set theory. Denote the
notion of "constr. set" relativized for a model M of set theory (i.e., defined
in terms of the e-relation of the model) by constr.M, then we have:
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TH. 9. Any element of Mw. (resp. MS) is constr. M. (resp. constr.M.);
in other words: A is true in the models M,, and Mg.
The proof is based on the following two facts: 1. The operation M'

(defined on p. 220) is absolute in the sense that the operation relativized for
the Model Mw,, applied to an x e M.t.. gives the same result as the original
operation (similarly for Mg). 2. The set Na which has as elements all
the M, (for I# < a) is constr.M.. for a <w. and constr.M0 for a < Q, as is
easily seen by an induction on a. From Th. 9 and the provability (from
the axioms of set theory) of Th. 8 it follows:
TH. 10. R and Care truefor the models M, and Mg.
The construction of M,,, and Mg and the proof for Th. 7 and Th. 9 (there-

fore also for Th. 10) can (after certain slight modifications) 12 be accomplished
in the resp. formal systems of set theory (without the axiom of choice), so
that a contradiction derived from C, R, A and the other axioms would lead
to a contradiction in set theory without C, R, A.

1 This paper gives a sketch of the consistency proof for propositions 1, 2 of Proc.
Nat. Acad. Sci., 24, 556 (1938), if T is Zermelo's system of axioms for set theory (Math.
Ann., 65, 261) with or without axiom of substitution and if Zermelo's notion of "Definite
Eigenschaft" is identified with "propositional function over the system of all sets." Cf.
the first definition of this paper.

2 It is assumed that for any element of M a symbol denoting it can be introduced.
3 At first with each pa an equivalent normal form of the above type has to be associ-

ated, which can easily be done.
4 In the well-ordering of the constr. sets.
6 m-means "power of m."
6 I.e., x e y =- f(x) ef(y). In the following proof f(x) is abbreviated by xi.
I.e., of the elements of order <a of K on the elements of order <a of M,1.

8 I.e., of the elements of order <a of K on the elements of order <cx of M,,.
9 Because f maps K-Ma on MA by induct. assumpt.
10 Cf. Math. Ann., 65, 261 (1908).
1" In order to give A an intuitive meaning, one has to understand by "sets" all objects

obtained by building up the simplified hierarchy of types on an empty set of individuals
(including types of arbitrary transfinite orders).

12 In particular for the system without the axiom of substitution we have to consider
instead of Mo. an isomorphic image of it (with some other relation R instead of the e-
relation), because Mw, contains sets of infinite type, whose existence cannot be proved
without the axiom of subst. The same device is needed for proving the consistency of
prop. 3, 4 of the paper quoted in footnote 1.

13 Th. 3, 4, 5, are lemmas for the proof of Th. 2.
* Unless explicitly stated otherwise "prop. fnct." always means "propositional func-

tion with one free variable."
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